HYFLIERS | HYbrid FLying-rollIng with-snakE-aRm robot for contact inSpection

Summary
HYFLIERS will develop two prototypes for the first worldwide hybrid aerial/ground robot with a hyper-redundant lightweight robotic articulated arm equipped with an inspection sensor, together with supporting services for efficient and safe inspection in industrial sites. Energy savings will be achieved by minimizing the time of flight and by performing the inspection while attached to the pipe. To ensure accurate positioning, guidance, landing and rolling on constrained surfaces such as pipes, the robot will rely on a control system also integrating environment perception, particularly for landing on the pipes, and aerodynamic control taking into account aerodynamic effects of the pipes. The system will also have multi-media interfaces for teleoperation, automatic collision detection and avoidance; a trajectory planning system that will take into account aerodynamic effects in addition to kinematic and dynamic models; and a mission planning system to optimize the use of the robot in the inspection. The technology results will be validated in the inspection of pipes, which is a very relevant short-term application. HYFLIERS will decrease the cost and risks of current human inspection in production plants, such as oil and gas, where it is estimated that about 50 000 pipe thickness measurement points are needed within a 3 to 5 years interval. HYFLIERS will eliminate the risks of accidental falls and the cost associated to the use of man-lifts, cranes, scaffold or rope access, which is many orders of magnitude larger than the measurement cost by itself. Taking into account that about 60% to 75% of inspection costs in this type of facilities is dedicated to ultrasonic thickness measurements, the project will concentrate on these measurements. The results of the project could be also applied to other industrial scenarios, such as power generation plants.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/779411
Start date: 01-01-2018
End date: 30-09-2022
Total budget - Public funding: 3 897 020,00 Euro - 3 897 020,00 Euro
Cordis data

Original description

HYFLIERS will develop two prototypes for the first worldwide hybrid aerial/ground robot with a hyper-redundant lightweight robotic articulated arm equipped with an inspection sensor, together with supporting services for efficient and safe inspection in industrial sites. Energy savings will be achieved by minimizing the time of flight and by performing the inspection while attached to the pipe. To ensure accurate positioning, guidance, landing and rolling on constrained surfaces such as pipes, the robot will rely on a control system also integrating environment perception, particularly for landing on the pipes, and aerodynamic control taking into account aerodynamic effects of the pipes. The system will also have multi-media interfaces for teleoperation, automatic collision detection and avoidance; a trajectory planning system that will take into account aerodynamic effects in addition to kinematic and dynamic models; and a mission planning system to optimize the use of the robot in the inspection. The technology results will be validated in the inspection of pipes, which is a very relevant short-term application. HYFLIERS will decrease the cost and risks of current human inspection in production plants, such as oil and gas, where it is estimated that about 50 000 pipe thickness measurement points are needed within a 3 to 5 years interval. HYFLIERS will eliminate the risks of accidental falls and the cost associated to the use of man-lifts, cranes, scaffold or rope access, which is many orders of magnitude larger than the measurement cost by itself. Taking into account that about 60% to 75% of inspection costs in this type of facilities is dedicated to ultrasonic thickness measurements, the project will concentrate on these measurements. The results of the project could be also applied to other industrial scenarios, such as power generation plants.

Status

CLOSED

Call topic

ICT-25-2016-2017

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.0. INDUSTRIAL LEADERSHIP - ICT - Cross-cutting calls
H2020-ICT-2016-1
ICT-25-2016-2017 Advanced robot capabilities research and take-up
H2020-ICT-2017-1
ICT-25-2016-2017 Advanced robot capabilities research and take-up