iCIRRUS | intelligent Converged network consolIdating Radio and optical access aRound USer equipment.

Summary
To meet the high throughput demands envisaged for 5G networks, with increased user densification and bandwidth-hungry applications, while at the same time reducing energy consumption, iCIRRUS proposes an intelligent Cloud-Radio Access Network (C-RAN) that brings together optical fibre technology, low-cost but highly flexible Ethernet networking, wireless resource management for device-to-device (D2D) communication (incl. the use of mm-wave spectrum) and the use of virtual mobiles in the cloud. The iCIRRUS C-RAN introduces the use of Ethernet in the fronthaul/midhaul (for radio signal transport), to minimise cost and make available pluggable and in-device monitoring, and intelligent processing to enable self-optimizing network functions which maximise both network resource utilisation and energy efficiency. To exemplify the attractiveness of the proposition, iCIRRUS focusses on D2D communication in the wireless domain, an important work area in current standardisation, where low latency is known to be a significant factor. The latency and jitter in the iCIRRUS Ethernet-based C-RAN will be an important focus of the research work in the project, with current 5G performance targets in mind; for D2D communications, the task will be to minimise control latency and overhead. A major obstacle for C-RANs is the bit-rate of the digitised radio signals that would be required for 5G – of the order of 100 Gb/s and iCIRRUS will examine the architectural and technological questions surrounding this requirement. Wireless resource management will be investigated, together with mobile device caching and mm-wave D2D mesh networks, to reduce latency as well as load on the infrastructure. Finally, the intelligent network functions in ICIRRUS can interact with mobile cloud processing, and further offloads of infrastructure communications can be realised through virtualising mobiles in the cloud as clones, and performing communication tasks between clones.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/644526
Start date: 01-01-2015
End date: 31-12-2017
Total budget - Public funding: 3 832 196,25 Euro - 3 832 195,00 Euro
Cordis data

Original description

To meet the high throughput demands envisaged for 5G networks, with increased user densification and bandwidth-hungry applications, while at the same time reducing energy consumption, iCIRRUS proposes an intelligent Cloud-Radio Access Network (C-RAN) that brings together optical fibre technology, low-cost but highly flexible Ethernet networking, wireless resource management for device-to-device (D2D) communication (incl. the use of mm-wave spectrum) and the use of virtual mobiles in the cloud. The iCIRRUS C-RAN introduces the use of Ethernet in the fronthaul/midhaul (for radio signal transport), to minimise cost and make available pluggable and in-device monitoring, and intelligent processing to enable self-optimizing network functions which maximise both network resource utilisation and energy efficiency. To exemplify the attractiveness of the proposition, iCIRRUS focusses on D2D communication in the wireless domain, an important work area in current standardisation, where low latency is known to be a significant factor. The latency and jitter in the iCIRRUS Ethernet-based C-RAN will be an important focus of the research work in the project, with current 5G performance targets in mind; for D2D communications, the task will be to minimise control latency and overhead. A major obstacle for C-RANs is the bit-rate of the digitised radio signals that would be required for 5G – of the order of 100 Gb/s and iCIRRUS will examine the architectural and technological questions surrounding this requirement. Wireless resource management will be investigated, together with mobile device caching and mm-wave D2D mesh networks, to reduce latency as well as load on the infrastructure. Finally, the intelligent network functions in ICIRRUS can interact with mobile cloud processing, and further offloads of infrastructure communications can be realised through virtualising mobiles in the cloud as clones, and performing communication tasks between clones.

Status

CLOSED

Call topic

ICT-06-2014

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT)
H2020-EU.2.1.1.3. Future Internet: Software, hardware, Infrastructures, technologies and services
H2020-ICT-2014-1
ICT-06-2014 Smart optical and wireless network technologies