Summary
PROTECT aims to introduce to the market One step antimicrobial finish processes for polymeric materials used in i) specialty textiles for public areas and hospitals, ii) water treatment membranes, and iii) implantable medical devices. Compared to main existing manufacturing routes, the proposed one-step coating technologies are simple, fast, and reproducible. For this, PROTECT uses as a starting point four existing pilot lines emanated from high successful FP7 projects SONO, NOVO and BioElectricSurface. PROTECT will upgrade the nanocoating One step process platform comprising: two roll to roll (R2R) pilots (sonochemical and spray coating) for functional textiles production, a R2R thermo-embedding pilot for antibacterial/biofilm preventing water treatment membranes, and a batch sonochemical pilot for antibacterial/antibiofilm/biocompatible medical devices. This platform will cover a wide range of applications due to their specific characteristics by the following objectives:
a) Incorporating ‘antibacterial antibiofilm biocompatible novel nanoparticles’(NPs) of the following categories: inorganic (CuxZn1-xO ,5 Ga@C-dots, Si/TiO2 composite) polymer (polypyrrole, PPy)) and biologicals (antibacterial enzymes, functionalized lipids (FSLs), hybrid antibacterials) to obtain ‘biocompatible nanostructured surfaces with antimicrobial and anti-adhesive’ properties.
b) Implementing real time characterization methods for monitoring at the nanoscale to characterise relevant materials, process properties and product features for ‘real-time nanoscale characterization’ to ensure ‘reproducibility’ and ‘quality’ of the nano-coated products
c) Improving ‘coating efficiency, production capacity, reproducibility, robustness, cost-effectiveness, safety and sustainability’ of the processes in relation to the targeted applications.
d) Introducing a Labs Network (PLN) that will include also lab scale processes of the proposed technologies for ‘training and knowledge dissemination.
a) Incorporating ‘antibacterial antibiofilm biocompatible novel nanoparticles’(NPs) of the following categories: inorganic (CuxZn1-xO ,5 Ga@C-dots, Si/TiO2 composite) polymer (polypyrrole, PPy)) and biologicals (antibacterial enzymes, functionalized lipids (FSLs), hybrid antibacterials) to obtain ‘biocompatible nanostructured surfaces with antimicrobial and anti-adhesive’ properties.
b) Implementing real time characterization methods for monitoring at the nanoscale to characterise relevant materials, process properties and product features for ‘real-time nanoscale characterization’ to ensure ‘reproducibility’ and ‘quality’ of the nano-coated products
c) Improving ‘coating efficiency, production capacity, reproducibility, robustness, cost-effectiveness, safety and sustainability’ of the processes in relation to the targeted applications.
d) Introducing a Labs Network (PLN) that will include also lab scale processes of the proposed technologies for ‘training and knowledge dissemination.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/720851 |
Start date: | 01-01-2017 |
End date: | 30-06-2021 |
Total budget - Public funding: | 9 441 862,50 Euro - 7 478 985,00 Euro |
Cordis data
Original description
PROTECT aims to introduce to the market One step antimicrobial finish processes for polymeric materials used in i) specialty textiles for public areas and hospitals, ii) water treatment membranes, and iii) implantable medical devices. Compared to main existing manufacturing routes, the proposed one-step coating technologies are simple, fast, and reproducible. For this, PROTECT uses as a starting point four existing pilot lines emanated from high successful FP7 projects SONO, NOVO and BioElectricSurface. PROTECT will upgrade the nanocoating One step process platform comprising: two roll to roll (R2R) pilots (sonochemical and spray coating) for functional textiles production, a R2R thermo-embedding pilot for antibacterial/biofilm preventing water treatment membranes, and a batch sonochemical pilot for antibacterial/antibiofilm/biocompatible medical devices. This platform will cover a wide range of applications due to their specific characteristics by the following objectives:a) Incorporating ‘antibacterial antibiofilm biocompatible novel nanoparticles’(NPs) of the following categories: inorganic (CuxZn1-xO ,5 Ga@C-dots, Si/TiO2 composite) polymer (polypyrrole, PPy)) and biologicals (antibacterial enzymes, functionalized lipids (FSLs), hybrid antibacterials) to obtain ‘biocompatible nanostructured surfaces with antimicrobial and anti-adhesive’ properties.
b) Implementing real time characterization methods for monitoring at the nanoscale to characterise relevant materials, process properties and product features for ‘real-time nanoscale characterization’ to ensure ‘reproducibility’ and ‘quality’ of the nano-coated products
c) Improving ‘coating efficiency, production capacity, reproducibility, robustness, cost-effectiveness, safety and sustainability’ of the processes in relation to the targeted applications.
d) Introducing a Labs Network (PLN) that will include also lab scale processes of the proposed technologies for ‘training and knowledge dissemination.
Status
CLOSEDCall topic
PILOTS-02-2016Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.2.1.2. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies