Impact of wildlife movements on sickness

Summary
Disease transmission between wildlife and livestock is often controlled by fencing, which may negatively affect ecosystem services by disconnecting fundamental processes. Recent advances in epidemiological surveillance in the Serengeti allows us to investigate alternative disease control strategies that will enhance the sustainability of mixed wildlife-livestock systems and optimize ecosystem services (Ferguson et al. 2013). UG, ILRI and TAWIRI will investigate ecosystem-oriented control strategies of FMD in a threefold approach. UG, ILRI and TAWIRI will use focused group discussions and key informant interviews with livestock keepers to understand the economic, environmental, social and political drivers in livestock management strategies. The second component will quantify the probability of transmission between livestock and wildlife by deploying GPS loggers on cattle to monitor their movement in relation to that of wildebeest in different land-use areas. Third, UG, ILRI and TAWIRI will extend the existing surveillance and sample banks of FMD in livestock to include opportunistic sampling of wildlife (from routine immobilization) with particular emphasis on the populations of migrating wildebeest that routinely encounter livestock. Finally these datasets will be combined to develop an epidemiological model of FMD transmission that can be used to identify potential barriers and test different vaccination strategies, such as reactive point vaccinations versus pro-active buffer area vaccinations or sporadic versus continual vaccinations.