Consciousness: models, metrics and intervention. Issue 2

Summary
T1.1 Neuroscience, Consciousness & Bits (UMI, all): We will review models of consciousness, the relevance of information integration, KAC, bistability, brain rhythms related with consciousness and other explanatory correlates, and study implications for artificial systems and other cognitive sciences. Guide experimental work: specify methods for consciousness characterization, from classical spectral measures to information transfer, connectivity and complex network EEG metrics; explore intrinsic bistability of cortical neurons as a final common pathway leading to a decreased capacity for information integration (indexed by PCI and other metrics) during loss of consciousness; propose how to test hypotheses by studying the effects of different types of perturbations (NIBS, PNS) on EEG recorded during different consciousness conditions; explore the possibility of calculating PCI, or of detecting signs of cortical bistability, starting from stimulation protocols such as tCS and PNS-mediated stimulation (i.e., oddballs, local-global paradigm, subject’s own name); define KAC metrics: 1) using auditory stimuli and study associated functional networks; 2) explore the existence of similar signals using NIBS 3) evaluate tACS perturbation on EEG to create an analogue of sensory ERP. Design techniques to detect the occurrence of perturbation-induced cortical downstates, including period-amplitude analysis of evoked slow waves, time-frequency decomposition and empirical mode decomposition; assess the impact of the downstate on causality at each single recording site by calculating phase-locking factor (Lachaux1999), and the impact of the downstate on causality across recording sites by calculating the phase-locking value (Palva2010). Pre-select appropriate EEG feedback loops in NIBS and guide the EEG feature search (WP2). Finally, organise the 2-3 day yearly project workshops for brainstorming and experimental design. As a final task in the project the experimental results obtained in WP3 will be interpreted and transformed into theoretical advances on consciousness understanding.