XpulpNN: Enabling Energy Efficient and Flexible Inference of Quantized Neural Networks on RISC-V Based IoT End Nodes

Summary

This is a publication. If there is no link to the publication on this page, you can try the pre-formated search via the search engines listed on this page.

Authors: Angelo Garofalo; Giuseppe Tagliavini; Francesco Conti; Luca Benini; Davide Rossi

Journal title: IEEE Transactions on Emerging Topics in Computing

Journal number: 21686750

Journal publisher: IEEE Computer Society

Published year: 2021

Published pages: 1489 - 1505

DOI identifier: 10.1109/tetc.2021.3072337

ISSN: 2168-6750