Paper on energy storage in plants

Summary
This paper will present the results on energy storage in plantsFor this purpose we will develop ia biosupercapacitor and ii a supercapacitor in plants iThe biofuel concept described in WP4 will be explored for the development of a biosupercapacitor in plants UPD will follow a novel and original approach which has been described in the most recent literature inclusion within the classical structure of the device of enzymes able to selfcharge each side of the capacitor resulting in a hybrid biofuel cellbiosupercapacitor Upon glucose oxidationoxygen reduction electrons are progressively transferred tofrom the redox hydrogel so that the anodic side of the hydrogel is reduced while the cathodic side of the hydrogel is oxidized following a Nernstian behaviour potential given by the Os3Os2 ratio the redox potentials of the anode and the cathode progressively split forming two separated Os halfcells To increase specific charge the Os hydrogel will be modified with electron rich molecules pyrene perylene in order to immobilize SWCNTs or graphene GR within the matrix UPDii Development of supercapacitors in plantLiU has demonstrated a proof of concept of in vivo manufactured supercapacitors in the stem of plants based on ePlants technology In addition it has demonstrated electrochromic pixels fabricated in the leaves of the plants We will extend these concepts for development of charge storage devices in plants To add to the intrinsic specific capacitance of the organic electronic materials LiU will be functionalized with redox molecules Depending on the location of the supercapacitor different geometries will be used 1D wires in the stem 2D in leaves and 3D in bulky leaves and roots LiU