Summary
Task 2.3 RAN Logical Architecture (M4-M21)
Task leader: NOK
Participants: BBC, NOK, NOM, SEUK, UNIS, UPV
The aim of this task is to define a RAN architecture for 5G to enable broadcast and multicast PTM transmissions, which is to be tightly integrated with the 5G unicast system. The task also aims to supports a wide range of future Multi-Service, Multi-Band (MSBM) services (such as M&E vertical, object-based broadcast service, PWS, etc.) with vastly diverse architectural requirements.
To tackle the challenge, it is suggested to partition a single common 5G infrastructure into multiple logical end-to-end multiple service systems. This is the principle of network slicing or service multiplexing which enables dynamic provisioning of 5G-Xcast services over the RAN to the end users in an efficient manner without incurring inter-service-band-interference (ISBI). To this end, a 5G-Xcast MSMB system is envisaged to integrate broadcast, multicast and unicast services, and encompass different frame structures optimized for different services. The MSMB architecture should be highly scalable and flexible, and subsumes the stand-alone network as a special case. It is intended to establish a generic framework for the 5G-Xcast MSMB system. This analytical framework may be used to optimize i) the radio numerology and related PHY layer design defined in Task 3.2 and ii) ISBI cancellation/mitigation and other novel interference management schemes, by optimizing the resources used while dynamically slicing the network.
The main goal of the task would be to define a simplified 5G RAN architecture to efficiently interwork with the core network (based on the work done in WP4), and to deliver the Xcast content in a simple and efficient manner. The task would investigate the need for the multitude of control and user plane nodes, present in legacy RAN, to be included in 5G, with the goal of designing an efficient RAN architecture that is flexible to support all the envisioned 5G use cases, as defined in WP2. It would also be investigated to whether a unified 5G-Xcast RAN architecture can be defined for the user plane delivery of traffic, for Xcast content delivery. Minimizing the usage of dedicated control plane nodes would also be investigated. The unified architecture should operate under the constraints of virtualization, softwarization, network orchestration and multi-tenancy.
More information & hyperlinks