Performance prediction of high-entropy perovskites La0.8Sr0.2MnxCoyFezO3 with automated highthroughput characterization of combinatorial libraries and machine learning

Summary

This is a publication. If there is no link to the publication on this page, you can try the pre-formated search via the search engines listed on this page.

Authors: Carlota Bozal-Ginesta, Juande Sirvent, Giulio Cordaro, Sarah Fearn, Sergio Pablo-García, Francesco Chiabrera, Changhyeok Choi, Lisa Laa, Marc Núñez, Andrea Cavallaro, Fjorelo Buzi, Ainara Aguadero, Guilhem Dezanneau, John Kilner, Alex Morata, Federico Baiutti, Alán Aspuru-Guzik, Albert Tarancón

Journal title: Advanced Materials

Journal number: Vol. 36 Issue 50

Journal publisher: United Nations Industrial Developement Organization

Published year: 2024

Published pages: 2407371

DOI identifier: 10.26434/chemrxiv-2024-4bn5w

ISSN: 0935-9648