Quantifying identifiability to choose and audit $\epsilon$ in differentially private deep learning

Summary

This is a publication. If there is no link to the publication on this page, you can try the pre-formated search via the search engines listed on this page.

Authors: Bernau, Daniel; Eibl, Günther; Grassal, Philip W.; Keller, Hannah; Kerschbaum, Florian

Journal title: Proceedings of the VLDB Endowment

Journal number: 4

Journal publisher: VLDB Endowment

Published year: 2021

DOI identifier: 10.14778/3484224.3484231

ISSN: 2150-8097