AFTERBIOCHEM | Anaerobic FermenTation & EsteRification of BIOmass for producing fine CHEmicals

Summary
The AFTER-BIOCHEM project aims to create multiple new value chains, from non-food biomass feedstock to multiple end-products, by combining anaerobic batch fermentation and esterification. In the fermentation process robust mixes of naturally occurring micro-organisms will produce organic acids such as propionic, butyric, isobutyric, valeric, isovaleric and caproic acids, with a mineral fertilizer sidestream. Based on the acids, a substantial number of derivatives may be produced, such as Vinyl Acetate Monomer (VAM) and cellulose acetate. The esterification process will convert the acetic acid into ethyl acetate and the propionic acid into ethyl propionate to maximize product value and minimize waste and energy use.
The feedstock of the fermentation process may be sugar production byproducts such as beet pulp and molasses, to increase the sustainability of sugar beet, a key European crop. The products will represent valuable renewable, bio-based, domestically-sourced alternatives to petrochemical products in numerous high-value applications such as flavorings and fragrances, hygiene products, pharmaceuticals, antimicrobials and polymers. The mineral fertilizer sidestream will contribute to the EU Action plan for the Circular Economy. The objective from 2020 to 2022 will be to commission the flagship biorefinery in France, which will then run at full capacity and integrate esterification from 2022 to 2024. Two further biorefineries should be initiated in Europe from 2024. The annual revenue generated by the three plants represents ca. €150 million, and at least 180 direct technical jobs and a commensurate number of indirect jobs would be created.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/887432
Start date: 01-05-2020
End date: 30-04-2024
Total budget - Public funding: 33 081 489,00 Euro - 19 959 552,00 Euro
Cordis data

Original description

The AFTER-BIOCHEM project aims to create multiple new value chains, from non-food biomass feedstock to multiple end-products, by combining anaerobic batch fermentation and esterification. In the fermentation process robust mixes of naturally occurring micro-organisms will produce organic acids such as propionic, butyric, isobutyric, valeric, isovaleric and caproic acids, with a mineral fertilizer sidestream. Based on the acids, a substantial number of derivatives may be produced, such as Vinyl Acetate Monomer (VAM) and cellulose acetate. The esterification process will convert the acetic acid into ethyl acetate and the propionic acid into ethyl propionate to maximize product value and minimize waste and energy use.
The feedstock of the fermentation process may be sugar production byproducts such as beet pulp and molasses, to increase the sustainability of sugar beet, a key European crop. The products will represent valuable renewable, bio-based, domestically-sourced alternatives to petrochemical products in numerous high-value applications such as flavorings and fragrances, hygiene products, pharmaceuticals, antimicrobials and polymers. The mineral fertilizer sidestream will contribute to the EU Action plan for the Circular Economy. The objective from 2020 to 2022 will be to commission the flagship biorefinery in France, which will then run at full capacity and integrate esterification from 2022 to 2024. Two further biorefineries should be initiated in Europe from 2024. The annual revenue generated by the three plants represents ca. €150 million, and at least 180 direct technical jobs and a commensurate number of indirect jobs would be created.

Status

SIGNED

Call topic

BBI-2019-SO2-F2

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.4. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
H2020-BBI-JTI-2019
BBI-2019-SO2-F2 Apply technological combinations to valorise all components of biomass feedstock
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy
H2020-EU.3.2.6. Bio-based Industries Joint Technology Initiative (BBI-JTI)
H2020-EU.3.2.6.0. Cross-cutting call topics
H2020-BBI-JTI-2019
BBI-2019-SO2-F2 Apply technological combinations to valorise all components of biomass feedstock