BIOnTop | Novel packaging films and textiles with tailored end of life and performance based on bio-based copolymers and coatings

Summary
Only 31% of plastic is currently recycled and plastic packaging still have a deficient end of life. Thus, improvements are needed to provide cost effective solutions with high bio-based contents and suitable performances for demanding packaging applications, with a consumption of 19M ton/year, while still achieving compostability in mild conditions.
Using sustainably sourced comonomers, additives and fillers to formulate novel PLA copolymers and compounds, the BIOnTOP project will deliver recyclable-by-design cost competitive packaging solutions that can be mechanically recycled, industrially/home composted or even suitable for anaerobic digestion.
Moreover, the barrier properties of delivered bio-packaging trays, films and derived packaging, will be enhanced using removable protein-based coatings and a novel fatty acid grafting technology to decrease permeability and compete with fossil packaging.
In the field of textile packaging , most used coatings are not bio-based and of different nature from the coated fibres, making material or organic recycling extremely difficult. New PLA coatings or fatty grafting will allow reprocessing without significant loss of properties.
BIOnTOP packaging, based on >85% renewable resources, will be compatible with a broad range of packaging applications’ requirements but also multiple end of Life options. Our materials will be biodegradable in home composting conditions but also recyclable for multiple use secondary packaging.
Based on new circular bioeconomy value chains, BIOnTOP will generate growth for EU bioplastics and end users’ industries in the food and personal care sectors with potential in many fields: BIOnTOP production is estimated to reach close to 9.6 Mton per year by 2030, overall leading to €40 M turnover and 170 new jobs. All in all, reducing the environmental footprint of plastics, our new bio-based packaging will have a significant positive social and environmental impact.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/837761
Start date: 01-06-2019
End date: 31-05-2023
Total budget - Public funding: 5 447 389,00 Euro - 4 219 696,00 Euro
Cordis data

Original description

Only 31% of plastic is currently recycled and plastic packaging still have a deficient end of life. Thus, improvements are needed to provide cost effective solutions with high bio-based contents and suitable performances for demanding packaging applications, with a consumption of 19M ton/year, while still achieving compostability in mild conditions.
Using sustainably sourced comonomers, additives and fillers to formulate novel PLA copolymers and compounds, the BIOnTOP project will deliver recyclable-by-design cost competitive packaging solutions that can be mechanically recycled, industrially/home composted or even suitable for anaerobic digestion.
Moreover, the barrier properties of delivered bio-packaging trays, films and derived packaging, will be enhanced using removable protein-based coatings and a novel fatty acid grafting technology to decrease permeability and compete with fossil packaging.
In the field of textile packaging , most used coatings are not bio-based and of different nature from the coated fibres, making material or organic recycling extremely difficult. New PLA coatings or fatty grafting will allow reprocessing without significant loss of properties.
BIOnTOP packaging, based on >85% renewable resources, will be compatible with a broad range of packaging applications’ requirements but also multiple end of Life options. Our materials will be biodegradable in home composting conditions but also recyclable for multiple use secondary packaging.
Based on new circular bioeconomy value chains, BIOnTOP will generate growth for EU bioplastics and end users’ industries in the food and personal care sectors with potential in many fields: BIOnTOP production is estimated to reach close to 9.6 Mton per year by 2030, overall leading to €40 M turnover and 170 new jobs. All in all, reducing the environmental footprint of plastics, our new bio-based packaging will have a significant positive social and environmental impact.

Status

CLOSED

Call topic

BBI.2018.SO3.R10

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.4. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
H2020-BBI-JTI-2018
BBI.2018.SO3.R10 Develop bio-based packaging products that are biodegradable/ compostable and/or recyclable
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy
H2020-EU.3.2.6. Bio-based Industries Joint Technology Initiative (BBI-JTI)
H2020-EU.3.2.6.0. Cross-cutting call topics
H2020-BBI-JTI-2018
BBI.2018.SO3.R10 Develop bio-based packaging products that are biodegradable/ compostable and/or recyclable