UPLIFT | sUstainable PLastIcs for the Food and drink packaging indusTry

Summary
Recycling facilities are currently struggling when dealing with challenging plastic multi-layers, blends, and additives. Consequently, packaging plastics are mostly landfilled, incinerated or spilled into the environment. The concept of UPLIFT is to introduce biological depolymerization technology as an addition and integration to established recycling practices, by converting persistent plastic waste into more easily recyclable and/or degradable polymers. The project will start by analyzing the value-chains of the future to match and exploit the potential of microbe-and enzyme technology to effectively depolymerize the EoL plastic into monomers. Overall, the project aims at engineering towards greater scale and efficiency. Moreover, in order to contribute to further innovation, UPLIFT will also make use of an advanced high-throughput screening platform to further explore the potential of new and more efficient biocatalysts, among bacteria, yeasts and fungi. Synergies between genetic and protein engineering, as well as eco-engineering of microbial mixed consortia will be under Uplift’s scope. Furthermore, the knowledge of bio-depolymerization will be strategically applied for the eco-design and development of renewable and easy-recyclable polymers, thus making plastic packaging an available feedstock for the circular economy. Introducing biological depolymerization to current recycling practices will increase the capability of dealing with large amounts of currently non-recycled plastics. By doing so, UPLIFT will contribute and facilitate the transition to more efficient recycling facilities, thus paving the way to a sustainable plastic system.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/953073
Start date: 01-03-2021
End date: 28-02-2025
Total budget - Public funding: 7 640 653,00 Euro - 7 517 180,00 Euro
Cordis data

Original description

Recycling facilities are currently struggling when dealing with challenging plastic multi-layers, blends, and additives. Consequently, packaging plastics are mostly landfilled, incinerated or spilled into the environment. The concept of UPLIFT is to introduce biological depolymerization technology as an addition and integration to established recycling practices, by converting persistent plastic waste into more easily recyclable and/or degradable polymers. The project will start by analyzing the value-chains of the future to match and exploit the potential of microbe-and enzyme technology to effectively depolymerize the EoL plastic into monomers. Overall, the project aims at engineering towards greater scale and efficiency. Moreover, in order to contribute to further innovation, UPLIFT will also make use of an advanced high-throughput screening platform to further explore the potential of new and more efficient biocatalysts, among bacteria, yeasts and fungi. Synergies between genetic and protein engineering, as well as eco-engineering of microbial mixed consortia will be under Uplift’s scope. Furthermore, the knowledge of bio-depolymerization will be strategically applied for the eco-design and development of renewable and easy-recyclable polymers, thus making plastic packaging an available feedstock for the circular economy. Introducing biological depolymerization to current recycling practices will increase the capability of dealing with large amounts of currently non-recycled plastics. By doing so, UPLIFT will contribute and facilitate the transition to more efficient recycling facilities, thus paving the way to a sustainable plastic system.

Status

SIGNED

Call topic

CE-BIOTEC-09-2020

Update Date

27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.2. INDUSTRIAL LEADERSHIP
H2020-EU.2.1. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies
H2020-EU.2.1.4. INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Biotechnology
H2020-NMBP-TR-IND-2020-twostage
CE-BIOTEC-09-2020 Upcycling Bio Plastics of food and drinks packaging (RIA)