Summary
Motivated by an urgent need to mitigate climate change and, particularly, to reduce greenhouse gas emissions from food value chains, REDWine focuses on the utilization of biogenic carbon dioxide (CO2) from the wine fermentation process for microalgae biomass production and valorisation. A powerful synergy across bio-based industries results in REDWine’s innovative circular business model, which allows wine manufacturers to efficiently treat their liquid and gaseous effluents while profitably diversifying their revenues through the valorisation of Chlorella biomass into multiple high-value ingredients. The REDWine concept will be realized through the establishment of an integrated ‘Living Lab’ demonstrating the technical and economic viability of a system for collection and storage of the off-gas and liquid effluents of a 20,000L wine fermenter and its adaptation to microalgae cultivation and energy efficient harvesting technologies, in order to use 90% of the CO2 collected, to produce biomass. REDWine will demonstrate a circular concept through the development of a simple biorefinery to be deployed in the winery which will yield sustainable and cost competitive ingredients for food formulations (protein and fatty acids), cosmetics (peptides, carotenoid rich oils and active polysaccharides), agriculture (carbohydrates as vine biostimulants) and wine production (proteins for wine clarification). The proposed REDWine solution is expected to reduce the GHG emissions of the entire wine production value chain by at least 31% while potentially generating over €15M in revenues and creating 45 new jobs for a 7ML size winery on a 3-year time horizon. REDWine is led by primary producers, the AVIPE wine producers’ association, in partnership with 11 other very committed entities, including 7 SMEs, 1 LE, 2 RTOs and 1 UNI. The proposed consortium assures the all the needed multidisciplinary knowledge and a level of redundancy required for effective implementation of the project.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/101023567 |
Start date: | 01-05-2021 |
End date: | 30-04-2025 |
Total budget - Public funding: | 7 525 555,00 Euro - 5 676 744,00 Euro |
Cordis data
Original description
Motivated by an urgent need to mitigate climate change and, particularly, to reduce greenhouse gas emissions from food value chains, REDWine focuses on the utilization of biogenic carbon dioxide (CO2) from the wine fermentation process for microalgae biomass production and valorisation. A powerful synergy across bio-based industries results in REDWine’s innovative circular business model, which allows wine manufacturers to efficiently treat their liquid and gaseous effluents while profitably diversifying their revenues through the valorisation of Chlorella biomass into multiple high-value ingredients. The REDWine concept will be realized through the establishment of an integrated ‘Living Lab’ demonstrating the technical and economic viability of a system for collection and storage of the off-gas and liquid effluents of a 20,000L wine fermenter and its adaptation to microalgae cultivation and energy efficient harvesting technologies, in order to use 90% of the CO2 collected, to produce biomass. REDWine will demonstrate a circular concept through the development of a simple biorefinery to be deployed in the winery which will yield sustainable and cost competitive ingredients for food formulations (protein and fatty acids), cosmetics (peptides, carotenoid rich oils and active polysaccharides), agriculture (carbohydrates as vine biostimulants) and wine production (proteins for wine clarification). The proposed REDWine solution is expected to reduce the GHG emissions of the entire wine production value chain by at least 31% while potentially generating over €15M in revenues and creating 45 new jobs for a 7ML size winery on a 3-year time horizon. REDWine is led by primary producers, the AVIPE wine producers’ association, in partnership with 11 other very committed entities, including 7 SMEs, 1 LE, 2 RTOs and 1 UNI. The proposed consortium assures the all the needed multidisciplinary knowledge and a level of redundancy required for effective implementation of the project.Status
SIGNEDCall topic
BBI-2020-SO1-D2Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy