PRIMAGE | PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers

Summary
PRIMAGE proposes a cloud-based platform to support decision making in the clinical management of malignant solid tumours, offering predictive tools to assist diagnosis, prognosis, therapies choice and treatment follow up, based on the use of novel imaging biomarkers, in-silico tumour growth simulation, advanced visualisation of predictions with weighted confidence scores and machine-learning based translation of this knowledge into predictors for the most relevant, disease-specific, Clinical End Points.
PRIMAGE implements a hybrid cloud model, comprising the of use of open public cloud (based on EOSC services) and private clouds, enabling use by the scientific community (facilitating reuse of de-identified clinical curated data in Open Science) and also suitable for future commercial exploitation.
The proposed data infrastructures, imaging biomarkers and models for in-silico medicine research will be validated in the application context of two paediatric cancers, Neuroblastoma (NB, the most frequent solid cancer of early childhood) and the Diffuse Intrinsic Pontine Glioma (DIPG, the leading cause of brain tumour-related death in children). These two paediatric cancers are relevant validation cases given their representativeness of cancer disease, and their high societal impact, as they affect the most vulnerable and loved family members.
The European Society for Paediatric Oncology, two Imaging Biobanks and three of the most prominent European Paediatric oncology units are partners in this project, making retrospective clinical data (imaging, clinical, molecular and genetics) registries accessible to PRIMAGE, for training of machine learning algorithms and testing of the in-silico tools´ performance. Solutions to streamline and secure the data pseudonymisation, extraction, structuring, quality control and storage processes, will be implemented and validated also for use on prospective data, contributing European shared data infrastructures.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/826494
Start date: 01-12-2018
End date: 31-05-2023
Total budget - Public funding: 10 312 360,00 Euro - 10 311 920,00 Euro
Cordis data

Original description

PRIMAGE proposes a cloud-based platform to support decision making in the clinical management of malignant solid tumours, offering predictive tools to assist diagnosis, prognosis, therapies choice and treatment follow up, based on the use of novel imaging biomarkers, in-silico tumour growth simulation, advanced visualisation of predictions with weighted confidence scores and machine-learning based translation of this knowledge into predictors for the most relevant, disease-specific, Clinical End Points.
PRIMAGE implements a hybrid cloud model, comprising the of use of open public cloud (based on EOSC services) and private clouds, enabling use by the scientific community (facilitating reuse of de-identified clinical curated data in Open Science) and also suitable for future commercial exploitation.
The proposed data infrastructures, imaging biomarkers and models for in-silico medicine research will be validated in the application context of two paediatric cancers, Neuroblastoma (NB, the most frequent solid cancer of early childhood) and the Diffuse Intrinsic Pontine Glioma (DIPG, the leading cause of brain tumour-related death in children). These two paediatric cancers are relevant validation cases given their representativeness of cancer disease, and their high societal impact, as they affect the most vulnerable and loved family members.
The European Society for Paediatric Oncology, two Imaging Biobanks and three of the most prominent European Paediatric oncology units are partners in this project, making retrospective clinical data (imaging, clinical, molecular and genetics) registries accessible to PRIMAGE, for training of machine learning algorithms and testing of the in-silico tools´ performance. Solutions to streamline and secure the data pseudonymisation, extraction, structuring, quality control and storage processes, will be implemented and validated also for use on prospective data, contributing European shared data infrastructures.

Status

CLOSED

Call topic

SC1-DTH-07-2018

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.1. SOCIETAL CHALLENGES - Health, demographic change and well-being
H2020-EU.3.1.5. Methods and data
H2020-EU.3.1.5.3. Using in-silico medicine for improving disease management and prediction
H2020-SC1-DTH-2018-1
SC1-DTH-07-2018 Exploiting the full potential of in-silico medicine research for personalised diagnostics and therapies in cloud-based environments