Summary
Several crucial steps in wood industries involve extreme operation conditions (such as high temperature and pH) to remove or modify recalcitrant lignin that protects cellulose in the plant cell wall. Enzymes can substitute harsh and energy-demanding chemical treatments for sustainable production of bio-based building blocks and products in wood biorefinery. However, wild enzymes, evolved to act under natural environmental conditions, cannot be integrated into the current industrial processes. WoodZymes partners already have available extremozymes resisting very high temperature and pH that will be further optimized to be used as biocatalysts in wood industries. Enzyme application will include the recovery of phenolic compounds from enzymatic breakdown of technical lignin, and of lignin and hemicellulose compounds from enzymatic delignification and bleaching of kraft pulp (also resulting in more sustainable final cellulosic pulp). Extremophilic enzymes will also be used to valorize the latter compounds as bio-based precursors for adhesives in the manufacture of medium-density fiberboards, and as components of insulation polyurethane foams (substituting fossil building blocks), as well as for obtaining renewable sugar-based papermaking additives. WoodZymes illustrates the potential of extremozymes in the global bio-based economy, contributing to the sustainability and competitiveness of cellulose and board/polyurethane manufacture (as suggested by techno-economic and environmental analyses), and establishing a direct link between the pulp and wood industrial sectors. The feasibility of these objectives is based on a consortium from four EU countries formed by: i) four world-leading companies of the above industrial sectors; ii) a highly-active biotech SME commercializing extremophilic enzymes; and iii) four reputed research institutes of the wood, cellulose, lignin and enzymes sectors, being able to demonstrate the extremozyme-based technology at the pilot scale.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/792070 |
Start date: | 01-06-2018 |
End date: | 30-11-2021 |
Total budget - Public funding: | 5 207 318,00 Euro - 3 253 873,00 Euro |
Cordis data
Original description
Several crucial steps in wood industries involve extreme operation conditions (such as high temperature and pH) to remove or modify recalcitrant lignin that protects cellulose in the plant cell wall. Enzymes can substitute harsh and energy-demanding chemical treatments for sustainable production of bio-based building blocks and products in wood biorefinery. However, wild enzymes, evolved to act under natural environmental conditions, cannot be integrated into the current industrial processes. WoodZymes partners already have available extremozymes resisting very high temperature and pH that will be further optimized to be used as biocatalysts in wood industries. Enzyme application will include the recovery of phenolic compounds from enzymatic breakdown of technical lignin, and of lignin and hemicellulose compounds from enzymatic delignification and bleaching of kraft pulp (also resulting in more sustainable final cellulosic pulp). Extremophilic enzymes will also be used to valorize the latter compounds as bio-based precursors for adhesives in the manufacture of medium-density fiberboards, and as components of insulation polyurethane foams (substituting fossil building blocks), as well as for obtaining renewable sugar-based papermaking additives. WoodZymes illustrates the potential of extremozymes in the global bio-based economy, contributing to the sustainability and competitiveness of cellulose and board/polyurethane manufacture (as suggested by techno-economic and environmental analyses), and establishing a direct link between the pulp and wood industrial sectors. The feasibility of these objectives is based on a consortium from four EU countries formed by: i) four world-leading companies of the above industrial sectors; ii) a highly-active biotech SME commercializing extremophilic enzymes; and iii) four reputed research institutes of the wood, cellulose, lignin and enzymes sectors, being able to demonstrate the extremozyme-based technology at the pilot scale.Status
CLOSEDCall topic
BBI.2017.R3Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy