GRACE | Integrated oil spill response actions and environmental effects

Summary
Objectives: 1) to improve the observation and predictions of oil spreading in the sea using novel on-line sensors on-board vessels, fixed structures or gliders, and smart data transfer into operational awareness systems; 2) to examine the true environmental impacts and benefits of a suite of marine oil spill response methods (mechanical collection in water and below ice, in situ burning, use of chemical dispersants, bioremediation, electro-kinetics, and combinations of these) in cold climate and ice-infested areas; 3) to assess the impacts on biota of naturally and chemically dispersed oil, in situ burning residues and non-collected oil using biomarker methods and to develop specific methods for the rapid detection of the effects of oil pollution; 4) to develop a strategic Net Environmental Benefit Analysis tool (sNEBA) for oil spill response strategy decision making.
A true trans-disciplinary consortium will carry out the project. Oil sensors will be applied to novel platforms such as ferry-boxes, smart buoys, and gliders. The environmental impacts of the oil spill response methods will be assessed by performing pilot tests and field experiments in the coastal waters of Greenland, as well as laboratory tests in Svalbard and the Baltic Sea with the main focus on dispersed oil, in situ burning residues and non-collected oil. The sNEBA tool will be developed to include and overarch the biological and technical knowledge obtained in the project, as well as integrate with operational assessments being based on expertise on coastal protection and shoreline response. This can be used in establishing cross-border and trans-boundary cooperation and agreements. The proposal addresses novel observation technology and integrated response methods at extreme cold temperatures and in ice. It also addresses the environmental impacts and includes a partner from Canada. The results are vital for the off-shore industry and will enhance the business of oil spill response services.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/679266
Start date: 01-03-2016
End date: 31-08-2019
Total budget - Public funding: 5 513 252,50 Euro - 5 277 554,00 Euro
Cordis data

Original description

Objectives: 1) to improve the observation and predictions of oil spreading in the sea using novel on-line sensors on-board vessels, fixed structures or gliders, and smart data transfer into operational awareness systems; 2) to examine the true environmental impacts and benefits of a suite of marine oil spill response methods (mechanical collection in water and below ice, in situ burning, use of chemical dispersants, bioremediation, electro-kinetics, and combinations of these) in cold climate and ice-infested areas; 3) to assess the impacts on biota of naturally and chemically dispersed oil, in situ burning residues and non-collected oil using biomarker methods and to develop specific methods for the rapid detection of the effects of oil pollution; 4) to develop a strategic Net Environmental Benefit Analysis tool (sNEBA) for oil spill response strategy decision making.
A true trans-disciplinary consortium will carry out the project. Oil sensors will be applied to novel platforms such as ferry-boxes, smart buoys, and gliders. The environmental impacts of the oil spill response methods will be assessed by performing pilot tests and field experiments in the coastal waters of Greenland, as well as laboratory tests in Svalbard and the Baltic Sea with the main focus on dispersed oil, in situ burning residues and non-collected oil. The sNEBA tool will be developed to include and overarch the biological and technical knowledge obtained in the project, as well as integrate with operational assessments being based on expertise on coastal protection and shoreline response. This can be used in establishing cross-border and trans-boundary cooperation and agreements. The proposal addresses novel observation technology and integrated response methods at extreme cold temperatures and in ice. It also addresses the environmental impacts and includes a partner from Canada. The results are vital for the off-shore industry and will enhance the business of oil spill response services.

Status

CLOSED

Call topic

BG-07-2015

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy
H2020-EU.3.2.0. Cross-cutting call topics
H2020-BG-2015-2
BG-07-2015 Response capacities to oil spills and marine pollutions