Summary
This proposal is for the development of a novel wave energy converter whose primary coupling with the waves is through hydrodynamic lift forces. The objective is to determine the potential of this concept to produce renewable energy at a commercially competitive price whilst ensuring a minimal environmental/social impact. This will be achieved by a combination of numerical/physical modelling and desk-based studies of the structural design, the operational & maintenance requirements and the environmental/social impacts of the technology. The numerical/physical modelling will demonstrate the concept’s performance, thereby taking the concept to TRL4, whilst the desk-based studies will allow the socially-acceptable commercial potential to be determined.
Wave energy is one of the few untapped sources of renewable energy that could make a significant contribution to the future energy system. However, a study of the literature and a patent search indicates that of the hundreds of concepts that have been developed only four couple to the waves through lift forces, whilst the rest couple through diffraction or buoyancy forces. However, coupling through lift forces has the significant advantage of reducing extreme loads (by reducing the circulation like a wind turbine) which facilitates survivability, and produces unidirectional rotation, which simplifies power extraction. Unfortunately, none of the current lift-based ave energy concepts have a high efficiency in all sea-states due to difficulties in maintaining a good lift-to-drag ratio. The novel ideas in this proposal are designed to achieve this and thus enable the commercial development of wave energy and the acceleration of clean energy solutions.
Wave energy is one of the few untapped sources of renewable energy that could make a significant contribution to the future energy system. However, a study of the literature and a patent search indicates that of the hundreds of concepts that have been developed only four couple to the waves through lift forces, whilst the rest couple through diffraction or buoyancy forces. However, coupling through lift forces has the significant advantage of reducing extreme loads (by reducing the circulation like a wind turbine) which facilitates survivability, and produces unidirectional rotation, which simplifies power extraction. Unfortunately, none of the current lift-based ave energy concepts have a high efficiency in all sea-states due to difficulties in maintaining a good lift-to-drag ratio. The novel ideas in this proposal are designed to achieve this and thus enable the commercial development of wave energy and the acceleration of clean energy solutions.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/851885 |
Start date: | 01-12-2019 |
End date: | 31-03-2023 |
Total budget - Public funding: | 3 404 730,00 Euro - 3 404 730,00 Euro |
Cordis data
Original description
This proposal is for the development of a novel wave energy converter whose primary coupling with the waves is through hydrodynamic lift forces. The objective is to determine the potential of this concept to produce renewable energy at a commercially competitive price whilst ensuring a minimal environmental/social impact. This will be achieved by a combination of numerical/physical modelling and desk-based studies of the structural design, the operational & maintenance requirements and the environmental/social impacts of the technology. The numerical/physical modelling will demonstrate the concept’s performance, thereby taking the concept to TRL4, whilst the desk-based studies will allow the socially-acceptable commercial potential to be determined.Wave energy is one of the few untapped sources of renewable energy that could make a significant contribution to the future energy system. However, a study of the literature and a patent search indicates that of the hundreds of concepts that have been developed only four couple to the waves through lift forces, whilst the rest couple through diffraction or buoyancy forces. However, coupling through lift forces has the significant advantage of reducing extreme loads (by reducing the circulation like a wind turbine) which facilitates survivability, and produces unidirectional rotation, which simplifies power extraction. Unfortunately, none of the current lift-based ave energy concepts have a high efficiency in all sea-states due to difficulties in maintaining a good lift-to-drag ratio. The novel ideas in this proposal are designed to achieve this and thus enable the commercial development of wave energy and the acceleration of clean energy solutions.
Status
SIGNEDCall topic
LC-SC3-RES-1-2019-2020Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all