Summary
The RADIANT Project has for ambition to create the smartest self-limiting heating system integrated on cabin panel to revolutionize the thermal comfort of Aircraft while contributing to the competitiveness of our industry.
The consortium members are HUTCHINSON, a world leader for Cabin solutions, CANOE is a R&T centre with more than 5 years of expertise in the field of cost-effective carbon fibrous materials and smart composites especially for aeronautics market and CTAG a non-profit technology Center with years of expertise in the numerical simulation for thermal efficiency active in the automotive industry.
The RADIANT PANEL project offers a disruptive innovation proposal based on three main pillars:
A new positive temperature coefficient (PTC) textile coating made of ex-cellulose carbon fiber and a PVDF-based polymer,
A heated multi-functional cabin panel
A fully robotized manufacturing cell for the cabin panel assembly.
During the project, 2 type of coating will be tested. The textile coating will be assembled with their connectors on the top layer of the cabin panel by a collaborative work between a Cobot and a 6 axis robot. It is also proposed to carry out the full cabin temperature and air flow simulation using a specific software (TAITherm) coupled with the Human Thermal Module for the comfort prediction. Functionnal test and certification test will be validated the soltuion.
The RADIANT project has a 36 months duration and a budget of 702,516€. The consortium aims to take 10% market share of the cabin panel business, evaluated at 90 M€.
The consortium members are HUTCHINSON, a world leader for Cabin solutions, CANOE is a R&T centre with more than 5 years of expertise in the field of cost-effective carbon fibrous materials and smart composites especially for aeronautics market and CTAG a non-profit technology Center with years of expertise in the numerical simulation for thermal efficiency active in the automotive industry.
The RADIANT PANEL project offers a disruptive innovation proposal based on three main pillars:
A new positive temperature coefficient (PTC) textile coating made of ex-cellulose carbon fiber and a PVDF-based polymer,
A heated multi-functional cabin panel
A fully robotized manufacturing cell for the cabin panel assembly.
During the project, 2 type of coating will be tested. The textile coating will be assembled with their connectors on the top layer of the cabin panel by a collaborative work between a Cobot and a 6 axis robot. It is also proposed to carry out the full cabin temperature and air flow simulation using a specific software (TAITherm) coupled with the Human Thermal Module for the comfort prediction. Functionnal test and certification test will be validated the soltuion.
The RADIANT project has a 36 months duration and a budget of 702,516€. The consortium aims to take 10% market share of the cabin panel business, evaluated at 90 M€.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/821339 |
Start date: | 01-11-2018 |
End date: | 31-10-2021 |
Total budget - Public funding: | 700 585,00 Euro - 599 051,00 Euro |
Cordis data
Original description
The RADIANT Project has for ambition to create the smartest self-limiting heating system integrated on cabin panel to revolutionize the thermal comfort of Aircraft while contributing to the competitiveness of our industry.The consortium members are HUTCHINSON, a world leader for Cabin solutions, CANOE is a R&T centre with more than 5 years of expertise in the field of cost-effective carbon fibrous materials and smart composites especially for aeronautics market and CTAG a non-profit technology Center with years of expertise in the numerical simulation for thermal efficiency active in the automotive industry.
The RADIANT PANEL project offers a disruptive innovation proposal based on three main pillars:
A new positive temperature coefficient (PTC) textile coating made of ex-cellulose carbon fiber and a PVDF-based polymer,
A heated multi-functional cabin panel
A fully robotized manufacturing cell for the cabin panel assembly.
During the project, 2 type of coating will be tested. The textile coating will be assembled with their connectors on the top layer of the cabin panel by a collaborative work between a Cobot and a 6 axis robot. It is also proposed to carry out the full cabin temperature and air flow simulation using a specific software (TAITherm) coupled with the Human Thermal Module for the comfort prediction. Functionnal test and certification test will be validated the soltuion.
The RADIANT project has a 36 months duration and a budget of 702,516€. The consortium aims to take 10% market share of the cabin panel business, evaluated at 90 M€.
Status
CLOSEDCall topic
JTI-CS2-2017-CfP07-AIR-02-55Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all