NEWCORT | Novel Processes and Equipment in Composite Repair Technology

Summary
NEWCORT will develop and validate novel processes and equipment for the repair of composite airframes. Three key stages in the bonded composite repair procedure were identified, namely material removal & surface preparation, heating for polymerization of patch and positive pressure application for improved compaction of patch layers. In all three stages novel processes will be developed, either through integration of innovations already existing within the proposing consortium or through research focused in targeted areas. For material removal, developments include process optimization to enable close tolerance applications for curved thick composite structures, potentially combined with scarfed pre-cured patches, potential simplification of stepping requirements and adaptation of material removal equipment to most frequent geometries (e.g. fuselage curvature). Novel heating processes and equipment will focus on the polymerization of new types of resins (e.g. M20 at 140oC), possibly including thermoplastic materials, through application of new power supply control logic, dielectric sensors for curing and viscosity monitoring, heating flux sensors for improved curing control, heating mats with embedded thermocouples and dielectric sensors, simulation software for selection of blankets and thermocouples installation topology, as well as development of Quick Composite Repair (QCR) kits for most frequent aircraft repair cases. Finally, the development of positive pressure application equipment for flat / curved structures will be studied, together with optimized pressure measurement devices and control software, mountable to most frequent repair cases (e.g. composite fuselage curvature). The application of such novel processes in real-life aeronautical environment will be guaranteed, through the simultaneous development of all the associated application equipment, resulting in TRL-7 solutions, ready to undergo a full validation campaign during the last project steps.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/686701
Start date: 01-01-2016
End date: 31-12-2019
Total budget - Public funding: 588 745,00 Euro - 588 745,00 Euro
Cordis data

Original description

NEWCORT will develop and validate novel processes and equipment for the repair of composite airframes. Three key stages in the bonded composite repair procedure were identified, namely material removal & surface preparation, heating for polymerization of patch and positive pressure application for improved compaction of patch layers. In all three stages novel processes will be developed, either through integration of innovations already existing within the proposing consortium or through research focused in targeted areas. For material removal, developments include process optimization to enable close tolerance applications for curved thick composite structures, potentially combined with scarfed pre-cured patches, potential simplification of stepping requirements and adaptation of material removal equipment to most frequent geometries (e.g. fuselage curvature). Novel heating processes and equipment will focus on the polymerization of new types of resins (e.g. M20 at 140oC), possibly including thermoplastic materials, through application of new power supply control logic, dielectric sensors for curing and viscosity monitoring, heating flux sensors for improved curing control, heating mats with embedded thermocouples and dielectric sensors, simulation software for selection of blankets and thermocouples installation topology, as well as development of Quick Composite Repair (QCR) kits for most frequent aircraft repair cases. Finally, the development of positive pressure application equipment for flat / curved structures will be studied, together with optimized pressure measurement devices and control software, mountable to most frequent repair cases (e.g. composite fuselage curvature). The application of such novel processes in real-life aeronautical environment will be guaranteed, through the simultaneous development of all the associated application equipment, resulting in TRL-7 solutions, ready to undergo a full validation campaign during the last project steps.

Status

CLOSED

Call topic

JTI-CS2-2014-CFP01-AIR-02-05

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.4. SOCIETAL CHALLENGES - Smart, Green And Integrated Transport
H2020-EU.3.4.5. CLEANSKY2
H2020-EU.3.4.5.4. ITD Airframe
H2020-CS2-CFP01-2014-01
JTI-CS2-2014-CFP01-AIR-02-05 Structural bonded repair of monolithic composite airframe