Summary
NEODAMP is marked in the ITD Airframe part B, oriented to highly integrated innovative structural components, for the Large Passenger Aircraft.
NEODAMP will develop new prepreg composite materials for structural purposes in the aircraft, able to support structural loads and other additional functions. The project is focused on acoustic damping and complemented with electrical conductivity studies while using techniques related to additional embedded and/or integrated functionality.
Composite materials will be chosen among those provided by a widely experienced manufacturer, to meet the future needs and requirements given by the topic manager. Activities are distributed along 36 months, and tasks are associated to 3 main topics: material development, screening and process ability.
In order to find the optimal material, a series of key characteristics will be selected, such as acoustic damping, structural and mechanical properties, HSE requirements, Fire, Smoke&Toxicity resistance for fuselage applications, resistance to environmental factors, automatic manufacturing and costs. The damping material will be improved and modified to adjusts properties such as tacking or curing parameters.
All the cited features will be deeply studied through a test campaign, at coupon level using raw damping material and the embedded damping prepreg composite material. The wide variety of tests will include from damping behavior and vibro-acoustic performance to lightning strike protection, including aging, common mechanical properties and physicochemical tests. Needed panels and embedded design will be done and manufactured by the partners.
Results of the cited works altogether will guide to the optimal design and manufacturing of trials, which will reach to material improvements also. The production of demonstrators will be oriented to automatic fuselage production by using automatic fiber placement techniques and always considering possible solutions for industrialization.
NEODAMP will develop new prepreg composite materials for structural purposes in the aircraft, able to support structural loads and other additional functions. The project is focused on acoustic damping and complemented with electrical conductivity studies while using techniques related to additional embedded and/or integrated functionality.
Composite materials will be chosen among those provided by a widely experienced manufacturer, to meet the future needs and requirements given by the topic manager. Activities are distributed along 36 months, and tasks are associated to 3 main topics: material development, screening and process ability.
In order to find the optimal material, a series of key characteristics will be selected, such as acoustic damping, structural and mechanical properties, HSE requirements, Fire, Smoke&Toxicity resistance for fuselage applications, resistance to environmental factors, automatic manufacturing and costs. The damping material will be improved and modified to adjusts properties such as tacking or curing parameters.
All the cited features will be deeply studied through a test campaign, at coupon level using raw damping material and the embedded damping prepreg composite material. The wide variety of tests will include from damping behavior and vibro-acoustic performance to lightning strike protection, including aging, common mechanical properties and physicochemical tests. Needed panels and embedded design will be done and manufactured by the partners.
Results of the cited works altogether will guide to the optimal design and manufacturing of trials, which will reach to material improvements also. The production of demonstrators will be oriented to automatic fuselage production by using automatic fiber placement techniques and always considering possible solutions for industrialization.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/686374 |
Start date: | 01-01-2016 |
End date: | 31-12-2018 |
Total budget - Public funding: | 350 012,50 Euro - 350 012,00 Euro |
Cordis data
Original description
NEODAMP is marked in the ITD Airframe part B, oriented to highly integrated innovative structural components, for the Large Passenger Aircraft.NEODAMP will develop new prepreg composite materials for structural purposes in the aircraft, able to support structural loads and other additional functions. The project is focused on acoustic damping and complemented with electrical conductivity studies while using techniques related to additional embedded and/or integrated functionality.
Composite materials will be chosen among those provided by a widely experienced manufacturer, to meet the future needs and requirements given by the topic manager. Activities are distributed along 36 months, and tasks are associated to 3 main topics: material development, screening and process ability.
In order to find the optimal material, a series of key characteristics will be selected, such as acoustic damping, structural and mechanical properties, HSE requirements, Fire, Smoke&Toxicity resistance for fuselage applications, resistance to environmental factors, automatic manufacturing and costs. The damping material will be improved and modified to adjusts properties such as tacking or curing parameters.
All the cited features will be deeply studied through a test campaign, at coupon level using raw damping material and the embedded damping prepreg composite material. The wide variety of tests will include from damping behavior and vibro-acoustic performance to lightning strike protection, including aging, common mechanical properties and physicochemical tests. Needed panels and embedded design will be done and manufactured by the partners.
Results of the cited works altogether will guide to the optimal design and manufacturing of trials, which will reach to material improvements also. The production of demonstrators will be oriented to automatic fuselage production by using automatic fiber placement techniques and always considering possible solutions for industrialization.
Status
CLOSEDCall topic
JTI-CS2-2014-CFP01-AIR-02-04Update Date
27-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all