TALON | Autonomous and Self-organized Artificial Intelligent Orchestrator for a Greener Industry 4.0

Summary
Next-generation industrial systems promise to deliver unprecedented excellence not only in terms of performance, but also explainability, trustworthiness and transparency. To achieve this new objectives, state-of-the-art concepts of artificial intelligence (AI), edge-to-cloud (E2C) computing, blockchain, and visualisation need to be de-risked and applied. Motivated by this, TALON aims at sculpturing the road towards the next Industrial revolution by developing a fully-automated AI architecture capable of bringing intelligence near the edge in a flexible, adaptable, explainable, energy and data efficient manner. TALON architecture consists of three fundamental pillars: a) an AI orchestrator that coordinates the network and service orchestrators in order to optimise the edge vs cloud relationship, while boosting reusability of datasets, algorithms and models by deciding where each one should be placed; b) a lightweight hierarchical blockchain schemes that introduce new service models and applications under a privacy and security umbrella; and c) new digital-twin empowered transfer learning and visualization approaches that enhance AI trustworthiness and transparency. It combines the benefits of AI, edge and cloud networking, as well as blockchain and DTs, optimized by means of a) new key performance indicators that translate the AI benefits into insightful metrics; b) novel theoretical framework for the characterisation of the AI; c) blockchain used to deliver personalised & perpetual protection based on security, privacy and trust mechanisms; d) AI approaches for automatically and co-optimising edge and cloud resources as well as the AI execution nodes; e) semantic AI to reduce the learning latency and enhance reusability; and f) digital twins that visualize the AI outputs and together with human-in-the-loop approaches. All the technological breakthroughs are demonstrated, validated and evaluated by means of proof-of-concept simulation and four real-world pilots.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101070181
Start date: 01-10-2022
End date: 30-09-2025
Total budget - Public funding: 3 769 382,50 Euro - 3 769 382,00 Euro
Cordis data

Original description

Next-generation industrial systems promise to deliver unprecedented excellence not only in terms of performance, but also explainability, trustworthiness and transparency. To achieve this new objectives, state-of-the-art concepts of artificial intelligence (AI), edge-to-cloud (E2C) computing, blockchain, and visualisation need to be de-risked and applied. Motivated by this, TALON aims at sculpturing the road towards the next Industrial revolution by developing a fully-automated AI architecture capable of bringing intelligence near the edge in a flexible, adaptable, explainable, energy and data efficient manner. TALON architecture consists of three fundamental pillars: a) an AI orchestrator that coordinates the network and service orchestrators in order to optimise the edge vs cloud relationship, while boosting reusability of datasets, algorithms and models by deciding where each one should be placed; b) a lightweight hierarchical blockchain schemes that introduce new service models and applications under a privacy and security umbrella; and c) new digital-twin empowered transfer learning and visualization approaches that enhance AI trustworthiness and transparency. It combines the benefits of AI, edge and cloud networking, as well as blockchain and DTs, optimized by means of a) new key performance indicators that translate the AI benefits into insightful metrics; b) novel theoretical framework for the characterisation of the AI; c) blockchain used to deliver personalised & perpetual protection based on security, privacy and trust mechanisms; d) AI approaches for automatically and co-optimising edge and cloud resources as well as the AI execution nodes; e) semantic AI to reduce the learning latency and enhance reusability; and f) digital twins that visualize the AI outputs and together with human-in-the-loop approaches. All the technological breakthroughs are demonstrated, validated and evaluated by means of proof-of-concept simulation and four real-world pilots.

Status

SIGNED

Call topic

HORIZON-CL4-2021-HUMAN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Artificial Intelligence, Data and Robotics Partnership (ADR)
ADR Partnership Call 2021
HORIZON-CL4-2021-HUMAN-01-01 Verifiable robustness, energy efficiency and transparency for Trustworthy AI: Scientific excellence boosting industrial competitiveness (AI, Data and Robotics Partnership) (RIA)
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.4 Digital, Industry and Space
HORIZON.2.4.5 Artificial Intelligence and Robotics
HORIZON-CL4-2021-HUMAN-01
HORIZON-CL4-2021-HUMAN-01-01 Verifiable robustness, energy efficiency and transparency for Trustworthy AI: Scientific excellence boosting industrial competitiveness (AI, Data and Robotics Partnership) (RIA)