CHIRALFORCE | Chiral separation of molecules enabled by enantioselective optical forces in integrated nanophotonic circuits

Summary
Separating enantiomers is crucial to produce bio-active molecules, e.g., in early-phase drug discovery. CHIRALFORCE aims at a radically new strategy to separate enantiometers on chip, using chiral optical forces at silicon-based integrated waveguides. The present solution of chiral chromatography for this multi-billion market is slow and cumbersome since it requires tailored chemistry for each chiral compound, and relies on large and expensive separation columns. Instead, CHIRALFORCE envisions cm-length optical circuits integrated with microfluidics for extremely quick, tuneable, and cheap enantiomeric separation. The underlying mechanism relies on optical forces that are enantioselective, due to interaction of spin-properties of the optical field with the chiral optical polarizability of matter. These chiral optical forces can be tailored well beyond the possibilities of free-space chiral light through nanophotonic design of strongly confined modes. Flowing analyte in microfluidic channels along cm-length laser-driven will then result in enantio-separation.

The approach to reach our main objectives relies on three main consortium strengths. First, we will design and synthesize chiral molecules and nanoparticles that will allow us to explore chiral forces regardless of how the chiral polarizability of matter is tuned by the size, shape, and in-built spectroscopic resonances, Next, we will establish the general framework of chiral optical forces on nanoparticles and molecules in liquid environments, leveraging our strength in nanophotonic theory, design and experiment, on chiral/spin-properties of electromagnetic fields. Finally, we will leverage our experience in nanotechnology to fabricate silicon-based photonic integrated circuits integrated with microfluidics to demonstrate enantiomer separation.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101046961
Start date: 01-12-2022
End date: 31-05-2026
Total budget - Public funding: 2 764 345,00 Euro - 2 764 345,00 Euro
Cordis data

Original description

Separating enantiomers is crucial to produce bio-active molecules, e.g., in early-phase drug discovery. CHIRALFORCE aims at a radically new strategy to separate enantiometers on chip, using chiral optical forces at silicon-based integrated waveguides. The present solution of chiral chromatography for this multi-billion market is slow and cumbersome since it requires tailored chemistry for each chiral compound, and relies on large and expensive separation columns. Instead, CHIRALFORCE envisions cm-length optical circuits integrated with microfluidics for extremely quick, tuneable, and cheap enantiomeric separation. The underlying mechanism relies on optical forces that are enantioselective, due to interaction of spin-properties of the optical field with the chiral optical polarizability of matter. These chiral optical forces can be tailored well beyond the possibilities of free-space chiral light through nanophotonic design of strongly confined modes. Flowing analyte in microfluidic channels along cm-length laser-driven will then result in enantio-separation.

The approach to reach our main objectives relies on three main consortium strengths. First, we will design and synthesize chiral molecules and nanoparticles that will allow us to explore chiral forces regardless of how the chiral polarizability of matter is tuned by the size, shape, and in-built spectroscopic resonances, Next, we will establish the general framework of chiral optical forces on nanoparticles and molecules in liquid environments, leveraging our strength in nanophotonic theory, design and experiment, on chiral/spin-properties of electromagnetic fields. Finally, we will leverage our experience in nanotechnology to fabricate silicon-based photonic integrated circuits integrated with microfluidics to demonstrate enantiomer separation.

Status

SIGNED

Call topic

HORIZON-EIC-2021-PATHFINDEROPEN-01-01

Update Date

09-02-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.3 Innovative Europe
HORIZON.3.1 The European Innovation Council (EIC)
HORIZON.3.1.1 The Pathfinder for Advanced Research
HORIZON-EIC-2021-PATHFINDEROPEN-01
HORIZON-EIC-2021-PATHFINDEROPEN-01-01 EIC Pathfinder Open 2021