CAPTUS | Demonstrating energy intensive industry-integrated solutions to produce liquid renewable energy carriers from CAPTUred carbon emissionS

Summary
GHG emissions reduction policies to mitigate climate change heavily impact on energy intensive industries, leading to loss of employment and competitiveness. In addition, variable renewable generation faces high risks from electricity curtailment if renewable surplus is not used. Carbon capture and utilisation technologies that make use of industrial flue gas and renewable surplus will play a key role in the clean energy transition of industry. Various technologies exist but most are still quite demanding in terms of materials and energy, being costly and inefficient. CAPTUS key objective is to demonstrate sustainable, cost-effective and scalable pathways to produce high-added value energy carriers by valorising industrial carbon emissions and integrating renewable electricity surplus. To this end, 3 complete value chains will be demonstrated at 3 different demo-sites: (i) Bioprocess based on a two-stage fermentation to produce triglycerides in a steel plant, (ii) Lipids-rich microalgae cultivation followed by hydrothermal liquefaction to produce bio-oils in a chemical plant, and (iii) Electrochemical reduction of CO2 to produce formic acid in a cement plant. The proposed technologies will be tested at TRL7, and the obtained energy carriers will be validated by upgrading studies. CAPTUS will also validate solutions regarding economic, environmental, societal and geo-political criteria, contributing to the development of novel business models, guidelines and strategies. CAPTUS has been structured in 8 WP, combining R&D activities, project management and demonstration activities. CAPTUS addresses this complex challenge by gathering a competitive consortium of 18 partners from 8 EU countries. Overall, CAPTUS innovations at technical, economical, managerial and social level will enable the consolidation of CCU technologies within 3 EII key sectors and leverage their benefits by reducing carbon emissions, increasing renewables share and producing valuable energy carriers
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/101118265
Start date: 01-06-2023
End date: 31-05-2027
Total budget - Public funding: 11 501 125,00 Euro - 9 999 706,00 Euro
Cordis data

Original description

GHG emissions reduction policies to mitigate climate change heavily impact on energy intensive industries, leading to loss of employment and competitiveness. In addition, variable renewable generation faces high risks from electricity curtailment if renewable surplus is not used. Carbon capture and utilisation technologies that make use of industrial flue gas and renewable surplus will play a key role in the clean energy transition of industry. Various technologies exist but most are still quite demanding in terms of materials and energy, being costly and inefficient. CAPTUS key objective is to demonstrate sustainable, cost-effective and scalable pathways to produce high-added value energy carriers by valorising industrial carbon emissions and integrating renewable electricity surplus. To this end, 3 complete value chains will be demonstrated at 3 different demo-sites: (i) Bioprocess based on a two-stage fermentation to produce triglycerides in a steel plant, (ii) Lipids-rich microalgae cultivation followed by hydrothermal liquefaction to produce bio-oils in a chemical plant, and (iii) Electrochemical reduction of CO2 to produce formic acid in a cement plant. The proposed technologies will be tested at TRL7, and the obtained energy carriers will be validated by upgrading studies. CAPTUS will also validate solutions regarding economic, environmental, societal and geo-political criteria, contributing to the development of novel business models, guidelines and strategies. CAPTUS has been structured in 8 WP, combining R&D activities, project management and demonstration activities. CAPTUS addresses this complex challenge by gathering a competitive consortium of 18 partners from 8 EU countries. Overall, CAPTUS innovations at technical, economical, managerial and social level will enable the consolidation of CCU technologies within 3 EII key sectors and leverage their benefits by reducing carbon emissions, increasing renewables share and producing valuable energy carriers

Status

SIGNED

Call topic

HORIZON-CL5-2022-D3-02-05

Update Date

31-07-2023
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon Europe
HORIZON.2 Global Challenges and European Industrial Competitiveness
HORIZON.2.5 Climate, Energy and Mobility
HORIZON.2.5.2 Energy Supply
HORIZON-CL5-2022-D3-02
HORIZON-CL5-2022-D3-02-05 Renewable energy carriers from variable renewable electricity surplus and carbon emissions from energy consuming sectors