MANGO | MANGO: exploring Manycore Architectures for Next-GeneratiOn HPC systems

Summary
MANGO targets to achieve extreme resource efficiency in future QoS-sensitive HPC through ambitious cross-boundary architecture exploration for performance/power/predictability (PPP) based on the definition of new-generation high-performance, power-efficient, heterogeneous architectures with native mechanisms for isolation and quality-of-service, and an innovative two-phase passive cooling system. Its disruptive approach will involve many interrelated mechanisms at various architectural levels, including heterogeneous computing cores, memory architectures, interconnects, run-time resource management, power monitoring and cooling, to the programming models. The system architecture will be inherently heterogeneous as an enabler for efficiency and application-based customization, where general-purpose compute nodes (GN) are intertwined with heterogeneous acceleration nodes (HN), linked by an across-boundary homogeneous interconnect. It will provide guarantees for predictability, bandwidth and latency for the whole HN node infrastructure, allowing dynamic adaptation to applications. MANGO will develop a toolset for PPP and explore holistic pro-active thermal and power management for energy optimization including chip, board and rack cooling levels, creating a hitherto inexistent link between HW and SW effects at all layers. Project will build an effective large-scale emulation platform. The architecture will be validated through noticeable examples of application with QoS and high-performance requirements.

Ultimately, the combined interplay of the multi-level innovative solutions brought by MANGO will result in a new positioning in the PPP space, ensuring sustainable performance as high as 100 PFLOPS for the realistic levels of power consumption (
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/671668
Start date: 01-10-2015
End date: 31-03-2019
Total budget - Public funding: 5 801 820,00 Euro - 5 801 820,00 Euro
Cordis data

Original description

MANGO targets to achieve extreme resource efficiency in future QoS-sensitive HPC through ambitious cross-boundary architecture exploration for performance/power/predictability (PPP) based on the definition of new-generation high-performance, power-efficient, heterogeneous architectures with native mechanisms for isolation and quality-of-service, and an innovative two-phase passive cooling system. Its disruptive approach will involve many interrelated mechanisms at various architectural levels, including heterogeneous computing cores, memory architectures, interconnects, run-time resource management, power monitoring and cooling, to the programming models. The system architecture will be inherently heterogeneous as an enabler for efficiency and application-based customization, where general-purpose compute nodes (GN) are intertwined with heterogeneous acceleration nodes (HN), linked by an across-boundary homogeneous interconnect. It will provide guarantees for predictability, bandwidth and latency for the whole HN node infrastructure, allowing dynamic adaptation to applications. MANGO will develop a toolset for PPP and explore holistic pro-active thermal and power management for energy optimization including chip, board and rack cooling levels, creating a hitherto inexistent link between HW and SW effects at all layers. Project will build an effective large-scale emulation platform. The architecture will be validated through noticeable examples of application with QoS and high-performance requirements.

Ultimately, the combined interplay of the multi-level innovative solutions brought by MANGO will result in a new positioning in the PPP space, ensuring sustainable performance as high as 100 PFLOPS for the realistic levels of power consumption (

Status

CLOSED

Call topic

FETHPC-1-2014

Update Date

27-04-2024
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.1. EXCELLENT SCIENCE
H2020-EU.1.2. EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
H2020-EU.1.2.2. FET Proactive
H2020-FETHPC-2014
FETHPC-1-2014 HPC Core Technologies, Programming Environments and Algorithms for Extreme Parallelism and Extreme Data Applications