iFermenter | iFERMENTER - CONVERSION OF FORESTRY SUGAR RESIDUAL STREAMS TO ANTIMICROBIAL PROTEINS BY INTELLIGENT FERMENTATION

Summary
Plant dry matter, so-called lignocellulosic biomass, is the largest renewable biomass feedstock on Earth. Europe has over 14 mill tons of sugar residuals from biorefineries, which could be converted to profitable products and contribute to a sustainable bioeconomy. Unfortunately, existing biorefineries struggle with technical issues and low profitability due to the lack of adequate fermentation processes. Therefore, these sugars are either incinerated to generate energy or at best converted to ethanol (€0.6 /kg) but not to higher value chemicals.
Current concepts that aim to establish fermentation processes to convert residual sugar streams to high value products face challenges including inefficient sugar utilization by microorganisms and inhibitors in the residual streams, leading to low productivity and yields.
Our project aims to recover high value compounds from sugar residuals, and to turn fermentation processes converting these residual to antimicrobials cost effective. We will recover the high value sugar galactose (€40-200 /kg) from residual streams as part of their treatment process. By genome editing technique, we will design cell factories that consume the remaining residuals and produce nisin (€50-150 /kg), an industrially important commercial food/feed preservative. Additionally, we will develop an affordable, online feedback add-on system that will allow to intelligently change residual mixture during fermentation of these cell factories to optimize production online during the process. In a 150 L industrial bioreactor, we will demonstrate that our add-on invention iFermenter
- increases the yields of nisin by over 2 fold
- increases the pediocin production by over 50% compared to what is possible today,
- and reduce at least 20% in CO2 footprint with this process compared to existing solutions.
Thus, iFermenter will render production of high value products with residual sugar stream highly efficient and cost-effective contributing to circular economy.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: https://cordis.europa.eu/project/id/790507
Start date: 01-05-2018
End date: 31-07-2022
Total budget - Public funding: 5 320 895,00 Euro - 3 997 825,00 Euro
Cordis data

Original description

Plant dry matter, so-called lignocellulosic biomass, is the largest renewable biomass feedstock on Earth. Europe has over 14 mill tons of sugar residuals from biorefineries, which could be converted to profitable products and contribute to a sustainable bioeconomy. Unfortunately, existing biorefineries struggle with technical issues and low profitability due to the lack of adequate fermentation processes. Therefore, these sugars are either incinerated to generate energy or at best converted to ethanol (€0.6 /kg) but not to higher value chemicals.
Current concepts that aim to establish fermentation processes to convert residual sugar streams to high value products face challenges including inefficient sugar utilization by microorganisms and inhibitors in the residual streams, leading to low productivity and yields.
Our project aims to recover high value compounds from sugar residuals, and to turn fermentation processes converting these residual to antimicrobials cost effective. We will recover the high value sugar galactose (€40-200 /kg) from residual streams as part of their treatment process. By genome editing technique, we will design cell factories that consume the remaining residuals and produce nisin (€50-150 /kg), an industrially important commercial food/feed preservative. Additionally, we will develop an affordable, online feedback add-on system that will allow to intelligently change residual mixture during fermentation of these cell factories to optimize production online during the process. In a 150 L industrial bioreactor, we will demonstrate that our add-on invention iFermenter
- increases the yields of nisin by over 2 fold
- increases the pediocin production by over 50% compared to what is possible today,
- and reduce at least 20% in CO2 footprint with this process compared to existing solutions.
Thus, iFermenter will render production of high value products with residual sugar stream highly efficient and cost-effective contributing to circular economy.

Status

CLOSED

Call topic

BBI.2017.R4

Update Date

26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all
Horizon 2020
H2020-EU.3. SOCIETAL CHALLENGES
H2020-EU.3.2. SOCIETAL CHALLENGES - Food security, sustainable agriculture and forestry, marine, maritime and inland water research, and the bioeconomy
H2020-EU.3.2.6. Bio-based Industries Joint Technology Initiative (BBI-JTI)
H2020-EU.3.2.6.1. Sustainable and competitive bio-based industries and supporting the development of a European bio-economy
H2020-BBI-JTI-2017
BBI.2017.R4 Proteins and other bioactive ingredients from side streams and residues