Summary
Surfactants and emulsifiers constitute an important class of chemical agents that are widely used in almost every sector of modern industry. The huge market demand is currently met almost exclusively by synthetic, mainly petroleum-based, chemical products, which are usually non-biodegradable and mostly toxic or GM plant based products (used in foods), which are undesirable by some end-users. Their biologically produced counterparts (i.e. bio-surfactants and bio-emulsifiers) offer more green sustainable alternatives. This has led to a number of manufactures, looking for ways to increase competitiveness through searching for underexploited sources such as the marine environment. Our objectives are to develop (1) innovative approaches in discovering, characterizing and producing novel marine-derived bio-surfactants from a large bacterial collection (greater than 500 strains) housed at Heriot Watt University, originally isolated from various coastal and open ocean waters around the world, (2) novel, economic, and eco-friendly end-products with commercial applications in order to replace synthetic counterparts, and (3) to demonstrate the functionality of new product development for commercial exploitation. Our collection consists of novel bacterial species, originally isolated for their ability to degrade oils, with proven promise in this respect. For this reason, our consortium (consisting of academic institutions, industrial companies and end-users) offering a wide range of expertise, will address the technical bottlenecks for meeting our objectives, namely those of marine resource identification, sustainable supply, discovery pipeline and efficient production in biological systems. The relevance of our proposal to the work programme is underlined by its expected impact in increasing efficiency of discovery pipelines, the development of more economic and eco-friendly end-products and finally in contributing to the implementation of the objectives of the EU Blue Growth.
Unfold all
/
Fold all
More information & hyperlinks
Web resources: | https://cordis.europa.eu/project/id/635340 |
Start date: | 01-09-2015 |
End date: | 28-02-2021 |
Total budget - Public funding: | 4 749 647,50 Euro - 4 749 647,00 Euro |
Cordis data
Original description
Surfactants and emulsifiers constitute an important class of chemical agents that are widely used in almost every sector of modern industry. The huge market demand is currently met almost exclusively by synthetic, mainly petroleum-based, chemical products, which are usually non-biodegradable and mostly toxic or GM plant based products (used in foods), which are undesirable by some end-users. Their biologically produced counterparts (i.e. bio-surfactants and bio-emulsifiers) offer more green sustainable alternatives. This has led to a number of manufactures, looking for ways to increase competitiveness through searching for underexploited sources such as the marine environment. Our objectives are to develop (1) innovative approaches in discovering, characterizing and producing novel marine-derived bio-surfactants from a large bacterial collection (greater than 500 strains) housed at Heriot Watt University, originally isolated from various coastal and open ocean waters around the world, (2) novel, economic, and eco-friendly end-products with commercial applications in order to replace synthetic counterparts, and (3) to demonstrate the functionality of new product development for commercial exploitation. Our collection consists of novel bacterial species, originally isolated for their ability to degrade oils, with proven promise in this respect. For this reason, our consortium (consisting of academic institutions, industrial companies and end-users) offering a wide range of expertise, will address the technical bottlenecks for meeting our objectives, namely those of marine resource identification, sustainable supply, discovery pipeline and efficient production in biological systems. The relevance of our proposal to the work programme is underlined by its expected impact in increasing efficiency of discovery pipelines, the development of more economic and eco-friendly end-products and finally in contributing to the implementation of the objectives of the EU Blue Growth.Status
CLOSEDCall topic
BG-03-2014Update Date
26-10-2022
Images
No images available.
Geographical location(s)
Structured mapping
Unfold all
/
Fold all